
Computer Science

Capstone Report - Spring 2022

Evaluating Machine Learning Approach in the
Context of Automatic Test Oracle Generation

Harry Lee

supervised by
Lihua Xu

Preface

This study investigates the application of machine learning in the field of
software testing, in particular, automatic test oracle generation. AI test oracle
generation shows great potential in assisting human testers in the software
testing process, which improves the efficiency of software development. In
this paper, we will propose a machine learning pipeline, along with several
active learning strategies. Then, based on our proposed pipeline, we evaluated
several machine learning algorithms, along with relevant strategies. Software
practitioners will be able to follow our proposed pipeline, and evaluate different
machine learning algorithms with our baseline.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Prof. Lihua
Xu for her guidance and assistance over the past two years. Being in her
software testing research team is the most valuable experience of my college
career. I would also like to express my appreciation to Qingshun Wang and
Xin Gong, who provided me with valuable help and suggestions over the entire
project. I would also express my gratitude to Prof. Olivier Marin for his
guidance and encouragement for my computer science senior project, and to
all NYU Shanghai computer science professors for their instructions and care
over my college years. Finally, I would like to thank my parents and friends
for their care and support, whom without this would have not been possible.

2

Abstract

In the field of software testing, test oracle is a mechanism that determines
whether software executes correctly with respect to a test case[1]. In industry,
human testers often undertake the role of test oracles - they review the output
of each test case and decide whether it passes or fails. However, when it comes
to fuzzing and some other automatic test generation techniques, the nature of
test case redundancy makes it almost impossible for human testers to examine
all the outcomes of the test cases.
Machine learning (ML) may enable the automated generation of test oracles.
So far, different studies have been working on different ML algorithms in the
field of software testing. However, a unified pipeline and baseline are miss-
ing that comparing these machine learning strategies comes to be intractable.
In this paper, we will propose a machine learning pipeline and several active
learning (AL) strategies that integrate the data generation phrase all the way
towards the evaluation phrase; we will also evaluate several machine learning
algorithms and our proposed active learning strategies using the pipeline. Soft-
ware practitioners will be able to follow our proposed pipeline, evaluating and
comparing different ML and AL strategies.

Keywords

Software testing, test oracle generation, machine learning, active learning,
capstone. computer science, NYU Shanghai

3

Contents

1. Introduction 5

2. Related Work 5

2.1. Testing and Test Oracles . 5

2.2. Machine Learning . 6

2.3. Using Machine Learning to Generate Test Oracles 6

3. Solution 8

3.1. Test Generation Phrase . 8

3.2. Machine Learning/Active Learning Phrase . 9

3.3. Evaluation Phrase . 9

4. Results 10

4.1. Experiment Setup . 10

4.2. Evaluation . 14

5. Discussion 16

5.1. Challenges . 16

5.2. Reflection on Related Works . 16

5.3. Limitations . 17

5.4. Possible Other Approaches . 18

6. Conclusion 18

A. Additional Results for Active Learning Experiments 21

4

1. Introduction

A key component of software testing is deciding whether a test case has passed or failed. The

mechanism that enables us to distinguish passing and failing cases is called a test oracle. As

the knowledge of expected program behavior is essential, the current practice of industry is

usually the human oracle. However, testing with human oracle is inefficient and impractical for

many scenarios, especially when it comes to fuzzing and some other automatic test generation

techniques. Thus, an automatic test oracle becomes helpful and essential.

Machine learning (ML) may enable the automated generation of test oracles. Since 2002,

studies have been published in the field of using machine learning for automated testing. Interest

in this topic is growing with the emergence of new and more powerful ML approaches, with over

half of the studies published since 2016[2]. As a subset of machine learning, active learning (AL)

is a type of algorithm that can achieve greater accuracy with fewer training labels if it is allowed

to choose the data from which it learns[3]. In the context of software testing, labeling each test

case is a highly consuming task for human testers. Thus, by taking advantage of active learning

test case selection methods, the work of human testers could be reduced.

So far, different studies have been working on a variety of ML algorithms in the field of software

testing. However, a unified pipeline and baseline are missing that comparing these machine

learning strategies comes to be intractable. In our project, we produce a detailed machine learning

pipeline for automated test oracle generation, which includes selecting a set of software under

test (SUT), creating a set of test cases for each SUT, transforming the execution traces to vector

embedding, training the test oracle with ML and AL algorithms, and evaluating the performance

of the entire process. We also refine several active learning strategies based on existing studies;

and evaluate several ML and AL algorithms with our proposed pipeline. Software practitioners

will be able to follow our proposed pipeline, and evaluate different machine learning algorithms

with the baseline.

2. Related Work

2.1. Testing and Test Oracles

Test oracle is a mechanism that determines whether software executes correctly for a test case[1].

Barr el al.[4] classified test oracles into 3 categories - specified oracle, derived oracle, and implicit

oracle.

5

Specified oracles judge all behavioral aspects of a system for a given formal specification, which

are effective in classifying test verdicts (whether a test case passes or fails), but requires heavy

human effort in defining a specification.

Implicit oracles refer to the detection of “obvious” faults such as a program crash. The estab-

lishment of implicit oracles does not rely on any domain knowledge or specification, and abundant

studies have been conducted in this area.

Derived oracles involve artifacts from which a test oracle may be derived — for instance, a

previous version of the system, or some human-labeled data. This kind of oracle is what all

ML-related automatic testing oracle generation studies we reviewed focus on.

2.2. Machine Learning

Machine learning (ML) may enable the automated generation of test oracles. In the field of

ML-enabled test oracle generation, 3 categories of ML techniques are involved - unsupervised

learning, semi-supervised learning, and supervised learning.

Unsupervised learning techniques do not require any labeled training data. That is to say, if

we apply unsupervised learning techniques to generate a test oracle, no previous human labeling

is needed. Some classic unsupervised learning algorithms include k-nearest neighbors algorithm

(k-NN)[5], agglomerative and divisive hierarchical clustering[6] and DBSCAN[7].

Supervised learning techniques require all labeled data to be labeled. This technique is most

likely to produce accurate results, but is also least applicable in our context.

Semi-supervised learning techniques lies between supervised learning and unsupervised learning,

which requires only part of the training data to be labeled. Classic semi-supervised learning

algorithms include self-training, co-training, and co-EM [8].

Another hot topic within the field of semi-supervised learning is active learning. The key

hypothesis of active learning is that if the learning algorithm is allowed to choose the data from

which it learns, it will perform better with less training[3]. The difference between active learning

and other semi-supervised learning techniques is that, the set of labeled data is dynamic, instead

of fixed, an algorithm is able to select a subset of training data to be labeled.

2.3. Using Machine Learning to Generate Test Oracles

Several studies have been working on utilizing machine learning to generate test oracles, including

works by Almaghairbe and Roper[9, 8, 10], Geethal[11], Braga et al[12], and Arrieta et al.[13].

6

To build and test a derived oracle, several common steps involved in this process.

2.3.1. Data Preparation

To generate a test oracle, a set of software under test (SUT) should be prepared, including a

buggy version and a fixed version. The buggy version simulates the real SUT in the industry,

while the fixed version is used to generate the correct output representing human labeling and

the evaluation process. The choices of SUT vary from study to study, some SUTs come from

open source software[9, 8, 10], while others are industrial applications[13].

Defects4J[14] is a database of existing faults to enable controlled testing studies for Java pro-

grams, which includes a set of SUT and each SUT has several buggy versions. Defects4J has

been used in several studies in the field of automatic test case generation and automatic program

repair, such as one automatic program repair study conducted by Martinez et al.[15].

2.3.2. Feature Engineering

Feature engineering refers to the process of selecting, manipulating, and transforming raw data

into features that can be directly learned in machine learning. In our case, feature engineering in-

volves the data processing of the execution trace. Almaghairbe and Roper[8] present several ways

for feature extraction towards input/out pair and execution trace. For complicated input/output

data, if they cannot be directly considered as quantitative or categorical data, it will be tokenized

and converted to a vector; for execution trace, they used a hash map to convert the trace into

vectors.

2.3.3. Machine Learning Algorithms

There are 2 categories of machine learning approaches in our selected papers: unsupervised learn-

ing and semi-supervised learning. Due to the huge cost of human labeling and our assumption

that automatically generated test oracle could eventually replace part of human work, many stud-

ies do not choose the direction of supervised learning, instead, they focus more on unsupervised

learning and semi-supervised learning.

Roper [10] argues that after clustering the test cases with unsupervised learning algorithms,

failing cases are more likely to appear in the clusters with smaller sizes. They later applied

another semi-supervised learning algorithm using only 4% of total data from the smaller clusters,

and reaches a classification accuracy of 63.9%, and when using 18.3% of data, the accuracy reaches

7

85.8%.

Despite classic semi-supervised learning algorithms, Geethal[11] applies an active learning ap-

proach to automatically "request" humans to label new data. They utilize LEARN2FIX[16] by

taking advantage of its active learning approach, which eventually classifies test cases with 63%

- 80% accuracy.

3. Solution

To mimic industrial test scenarios and gain required data for training and testing, figure 1 shows

our proposed pipeline. Our pipeline consists of 3 phrases - test generation phrase, machine

learning/active learning phrase, and evaluation phrase.

Figure 1: The overall pipeline of the test environment, including a test generation phrase, machine
learning/active learning phrase, and evaluation phrase.

3.1. Test Generation Phrase

The goal of the test generation phrase is to produce execution traces of both passing cases and

failing cases which maximally explores the SUT. To distinguish passing and failing cases, both

versions of the SUT are required - a buggy version and a fixed version. We generate test cases

with automatic test generation tools on the fixed version, so that we can ensure the correctness

of our test suite. Then, by executing the test suite on the buggy SUT, we are able to see which

test cases raise exceptions, which will enable us to output the test verdicts.

There might be 2 scenarios, in which the automatic test generation tools fail to produce a stable

test suite, or the automatic test suite cannot reveal any bugs in the buggy SUT. The former case

may be due to some random generators or timing functions that bring randomness. To avoid this

8

problem, we need to drop the SUT or exclude the code that introduces randomness. The latter

case is led by the limitation of automatic test generation tools. Despite extending the budget

on the execution time for automatic test generation tools, we can also look through the manual

test cases written by SUT developers, and write case-specific fuzzing scripts. These scripts will

exploit the buggy functions or APIs and randomly generate inputs that will maximally diversify

the execution trace of test cases that trigger exceptions.

3.2. Machine Learning/Active Learning Phrase

The ML/AL phrase is where the automatic test oracles are trained. In this phrase, 3 parts are

worth investigating - feature extraction, machine learning, and active learning. Feature extraction

may take the raw execution trace information, which is basically the list of method/block name

and number, and convert them into vectors that can be processed by machine learning or active

learning algorithms. The dataset is a combination of execution trace and test verdict. It is then

divided into the training and testing set. The training set will be utilized by either the (passive)

machine learning algorithm, or, in the context of active learning, the algorithm will first query

the labels it requires by its test case selection strategy, and then learn the labeled data.

3.3. Evaluation Phrase

Given the trained model and testing set, we are able to evaluate the model. With respect to the

quality of the oracle model, we formalizes the evaluation metrics as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F1 score =
2× (precision× recall)

precision+ recall

In the context of test oracle evaluation, TP, TN, FN, FP above are defined as below:

• TP: True positive, a failing test result classified as failing test

• FP: False positive, a passing test result classified as failing test

• TN: True negative, a passing test result classified as passing test

9

• FN: False negative, a failing test result classified as passing test

In addition, the time consumed for training is also considered.

4. Results

In this section, we will follow our proposed pipeline, and conduct a complete evaluation process of

several feature extraction methods, machine learning algorithms, and active learning strategies.

4.1. Experiment Setup

Our pipeline includes several parts that require testers to specify the detailed methods applied

to the testing environment. We will illustrate the details of our experiments in this section.

4.1.1. Test Generation

Defects4J[14] has been used in several studies in the field of automatic test case generation and

automatic program repair. In our experiment, we choose to utilize this database. When selecting

SUT from the Defects4J database, we are mainly concerned about 1) whether the output for each

generated input is stable and reproducible, and 2) whether random fuzzing can cover most of the

statements of SUT.

We chose Randoop, a feedback-directed regression testing tool for Java programs, to generate

our test suite. The test suite generated by Randoop contains only a few assertions statements

in each test case, which is able to produce test cases with a unified format while remaining the

ability to reach a high code coverage rate. By taking advantage of regression testing, the test

suite will include the test oracle by just comparing whether the execution results conform to

the results of the fixed version, which makes it easy for us to store the ground truth of test

verdicts. Thus, by executing the regression test suite on the fixed version of SUT, we will be able

to drop the SUTs that failed to generate stable and reproducible output - this situation often

happens to software that takes current time as input, or software that builds on random number

generators. However, compared to manual test suite, Randoop suffers from the limitation where

the difference between the fixed and buggy version of SUT can be only distinguished through

some corner cases. For example, when the condition of triggering an exception is only when

input is between [0.1e, 0.2e] or [0.1E, 0.2E], or when the input must follow a certain semantic

format - such as XML or JSON. To avoid these scenarios, we have selected a subset of Defects4J

10

programs which only take numbers, or strings without complected format requirements as input.

After generating the test suite, we manually examine each of them before collecting the execution

trace - if a regression test suite fails to generate test cases that can trigger an exception, we

will manually add those triggering conditions into the regression test suite, which are generated

by our case-specific random fuzzing scripts that can trigger the exceptions while increasing the

variability in their execution traces. Finally, we used our modified version of JaCoCo[17] to collect

the program execution trace. Compared to the original version of JaCoCo, our modified version

supports collecting the order of program execution, instead of whether a block has been covered

or not.

4.1.2. Feature Extraction

To maximize the effectiveness in extracting information from the execution trace, we have applied

3 feature extraction methods: sequence (seq), block coverage (bc1), and block coverage count

(bc2). Figure 2 shows a simplified example of data extraction.

Method Embedding

seq

[[1,0,0,0,0],
[0,1,0,0,0],
[0,0,1,0,0],
[0,1,0,0,0],
[0,0,0,0,1]]

bc1 [1,1,1,0,1]
bc2 [1,2,1,0,1]

Figure 2: An example program and its embedding generated by different feature extraction meth-
ods, where the order of block execution is [A → B → C → B → E]. Each node in
the graph represents a block of SUT. A block is a piece of code with exactly one entry
and exit point. In this example, the order of the one-hot embedding for each block is
in alphabetic order.

The common ground for the three methods is one-hot encoding. Each position of the one-hot

vector corresponds to a unique block. For example, the one-hot vector for block A is [1, 0, 0, 0, 0].

For the sequence method (seq), we stack the one-hot vectors for each block in their execution

order, which forms a 2D matrix - the rows of the matrix correspond to the unique blocks, and the

columns correspond to the executed blocks. In addition, to avoid execution trace explosion, and

unify sequence length (so that PyTorch can process it with GRU and LSTM), we pad or truncate

the sequence at a fixed length by the following equation:

11

length = min(α, µ+ σ)

, where α is the maximum length of all execution trace sequences, µ is the mean of all execution

trace sequence lengths, and σ is the standard derivation of all execution trace sequence lengths.

We assume the length of execution traces follows a normal distribution, and this equation guar-

antees that most sequence information is fully reserved, while only a few sequences are truncated

- but we believe that the parts we keep are sufficient enough for the algorithms to make decisions.

The block coverage count (bc2) method records the times that a block is visited. The

length of the bc2 vector corresponds to the number of unique blocks. Bc2 vector can be directly

computed by summing over the columns of the seq matrix.

The block coverage (bc1) method records whether a block has been visited. The length of

the bc2 vector corresponds to the number of unique blocks. Bc1 vector can be directly computed

by taking the Boolean value of the bc2 vector.

4.1.3. Machine Learning Algorithms and Techniques

In our experiments, 2 types of machine learning methods are explored: statistical learning and

deep learning. For statistical learning, we explored logistic regression (LR), support vector classi-

fier (SVC), and random forest (RF) algorithms. For deep learning, we explored 2 types of recursive

neural networks (RNN): gated recurrent unit (GRU) and long short-term memory (LSTM).

Statistical learning methods are able to capture information from simpler data. Thus, bc1

and bc2 methods are tested for the 3 algorithms. Among the 3 methods, LR focus directly on

predicting the probability of each test case, SVC aims to build a classification boundary between

test cases, while RF, as one bagging of decision trees, focuses on classifying test cases feature by

feature.

RNN has the ability to cope with sequential data. The advantage of seq method over bc1

and bc2 is that, seq maintains the information of the execution order of each block. However, it

also increases the complexity of the input vector. Thus, we utilize GRU and LSTM - 2 different

variations of RNN. GRU has a simpler architecture than LSTM, which is preferred in smaller

datasets, while LSTM is preferred in larger datasets.

One challenge in our experiments is that, the training data is highly imbalanced. Table 2

shows the number of passing and failing cases in our experiment. To avoid the machine learning

12

algorithm from flavoring the passing cases, we reweight the training data to ensure that the sum

of positive weights equals the sum of negative weights.

Project Failing Cases Passing Cases Failing Rate
Lang-1 35 8445 0.41%
Lang-3 6 7833 0.08%
Math-1 4 904 0.44%
Math-3 5 773 0.64%
Math-4 3 444 0.67%
Time-1 25 550 4.35%

Table 2: Passing and failing cases in each test suite and Defects4J project. Failing rate = number
of failing cases / number of total cases.

4.1.4. Active Learning Techniques

As a subset of machine learning, active learning is a type of algorithm that can achieve greater

accuracy with fewer training labels if it is allowed to choose the data from which it learns[3]. The

most important part of conducting active learning is how data is selected from the training set.

In our experiments, we adopted and improved the methods proposed by Groce et al.[18], 3 data

selection methods are explored: cosine distance prioritization (cos-dist), confidence prioritization

(confidence+), and random selection (random).

Cosine distance prioritization (cos-dist) method builds upon the idea of semi-supervised

learning. It assumes that similar cases are more likely to have the same label. Thus, instances

most distant from the selected set should be tested first. In practice, this method is highly time-

consuming since the algorithm requires computing the distance between each point of the selected

set and the candidate set (the set of data that is not yet included in the training process). Thus,

random sampling is used for approximate results. In practice, we set the random sample size to

be 16 times the number of new data to be labeled.

Confidence prioritization (confidence+) method builds upon the fact that all our selected

machine learning models are able to generate a prediction of probability for each execution trace.

Thus, by flavoring the predicted probability closer to 0.5, we are able to prioritize the test cases

that the model feels most "uncertain". However, statistical learning methods require the training

set to include both positive and negative labels. Thus, when not all labels are yet discovered, we

applied the cos-dist method in practice. On the other hand, we utilize the confidence prioritization

method for deep learning models throughout the entire training process.

13

Random selection (random) method works as a baseline. By comparing the result between

random selection and the 2 methods above, we can find out how well the selection methods have

been improved.

4.2. Evaluation

4.2.1. Explore SUT with (Passive) Machine Learning

Table 3 shows the evaluation metrics for machine learning algorithms. For LR, SVC, and RF, we

applied both bc1 ad bc2 feature extraction methods, and for GRU and LSTM, we only applied

the seq method for feature extraction. Our results show that, in the scope of statistical learning

methods, random forest (RF) has the best overall performance on its F1 score, which shows

its ability in discovering failing cases (high precision), while generating fewer "false alert" (high

recall). However, logistic regression (LR) achieves the highest recall, but a lot of its positive

predictions turn out to be negative (low precision). And support vector classifier performs the

worst among all our tested algorithms. As for deep learning methods, they show the ability to

handle complicated data, but their performance shows no superiority over the statistical learning

methods. Given that the training time of these models takes thousands of times over statistical

learning models, we do not consider them to be a preferable method in practice.

Algorithm Extraction Method Recall Precision Accuracy F1-Score
LR BC1 0.97 0.15 0.94 0.24
LR BC2 0.97 0.27 0.93 0.33
SVC BC1 0.47 0.09 0.76 0.11
SVC BC2 0.33 0.17 0.82 0.17
RF BC1 0.68 0.82 0.99 0.73
RF BC2 0.79 0.72 1.00 0.73
GRU SEQ 0.81 0.63 0.99 0.66
LSTM SEQ 0.86 0.70 0.99 0.71

Table 3: Average model performance for each combination of feature extraction method and ma-
chine learning algorithm among 6 Defects4J projects.

To evaluate the feature extraction methods, we averaged the evaluation metrics over the algo-

rithms, table 4 shows the averaged result. We drop the seq method outside of this table since

the results between seq and other 2 methods also relate to the chosen algorithms, which makes it

meaningless to conclude which feature extraction method is better. Our result shows that, block

coverage count (bc2) outperforms block coverage (bc1) method in precision, accuracy, and F1

score, and their difference in recall are close, which are nearly the same. In theory, bc2 contains

14

all the information that bc1 has, while our results show that statistical learning algorithms are

able to utilize this additional information and achieve a better result.

Extraction Method Recall Precision Accuracy F1-Score
BC1 0.71 0.35 0.90 0.36
BC2 0.70 0.39 0.92 0.41

Table 4: Average model performance BC1 and BC2 among 6 Defects4J projects and their applied
machine learning results.

4.2.2. Explore SUT with Active Learning

Our experiment with passive machine learning algorithms shows that the SVC algorithm shows

a poor ability in distinguishing passing and failing test cases. Thus, in our active learning ex-

periments, we have dropped SVC out of our inventory. Since random selection and the random

sampling techniques in cos-dist method bring randomness to the model, for each project, selec-

tion method, and machine learning algorithm, we run the same setting for 5 times to eliminate

contingency. While taking the mean for evaluating their performance, we also look through the

range of each experiment, which shows the stability and variation of each method. In addition,

to compare the results across algorithms, we store the data that is randomly generated to ensure

that for cos-dist and random methods, each algorithm will be able to fetch the identical training

data for each training size. Due to simplicity, figure 3 shows the F1-score with respect to each

training set size for 2 of our selected SUT, and the precision and recall curves are provided in

appendix A.

(a) Math-3, LR (b) Math-3, RF (c) Math-3, GRU (d) Math-3, LSTM

(e) Math-4, LR (f) Math-4, RF (g) Math-4, GRU (h) Math-4, LSTM

Figure 3: F1-score for projects Math-3 and Math-4, with respect to each machine learning algo-
rithm and active learning technique.

15

Our results of active learning experiments show that, both confidence+ and cos-dist method

outperforms random selection, and they tend to produce a much more stable result. Compare

to cos-dist, confidence+ performs slightly better. As confidence+ is more time-efficient than

cos-dist, it is considered to be the most preferred method in practice. In addition, compared to

statistical models, deep learning model results are more unstable. Although we have increased

the number of epochs for training, the result still turns out to be unstable.

5. Discussion

5.1. Challenges

During the entire project, we’ve encountered 3 challenges: programming language, testing tools,

and test efficiency.

Running Defects4J requires basic knowledge of Java programming language, specifically, how

to write JUnit test cases, including how to write fuzzing scripts that can randomly generate

JUnit test cases, and handle exceptions. In addition, the Defects4J database is built on Perl and

bash language, which are also unfamiliar to us. Thus, learning the relevant technology stack and

getting ready for the testing environment takes a lot of our time.

The original Defects4J framework does not have the ability to record the program execution

trace. And the original version of JaCoCo does not record the order of execution. As a result,

with the help of Qingshun Wang, we modified the JaCoCo source code, so that the sequence of

program execution traces can be stored.

Calculating cosine distance for every pair of embedding vectors is time-consuming. Thus, we

take a random sampling strategy to speed up this process. To increase the usability of distances

and unify the randomness across experiments with different algorithms, we introduced a cache

that stores the random state and each reusable intermediate result, which effectively saves the

running time for our evaluation process.

5.2. Reflection on Related Works

Roper [10] argues that after clustering the test cases with unsupervised learning algorithms,

failing cases are more likely to appear in the clusters with smaller sizes. In our cosine distance

prioritization active learning strategy, we pushed this idea to the extreme - instead of calculating

the distance between each cluster in the unsupervised learning context, we consider each execution

16

trace as an identical cluster. The smaller cluster in Roper’s study thus corresponds to the vectors

that are farthest from other vectors. The advantage of our approach over Roper’s unsupervised

learning method is that, our approach does not need to specify how many clusters are needed

for unsupervised learning (although not all unsupervised learning methods require specifying the

number of clusters in advance). In addition, Roper suggests that human testers should start

checking test cases from the smaller clusters, but does not mention the examination order within

each cluster. Our approach of cosine distance prioritization solves this problem by sorting the

execution traces.

The study of Groce et al.[18] shows the ability of support vector machine algorithms to dis-

tinguish passing and failing cases. However, in our experiment, the performance of SVC algo-

rithm works not well, and its performance is far behind other evaluated algorithms, although

our experiments conform to their results that confidence prioritization works better than cos-dist

prioritization.

5.3. Limitations

There are mainly 2 limitations in our study: the problem with SUT and Randoop, as well as the

deep learning model.

In our experiment, we use Randoop to randomly generate a huge set of automatic test cases,

which mimics the industrial situation where abundant random tests are executed by fuzzing tools.

However, the nature of Randoop suggests that it cannot be applied to SUT that has complicated

input - for example, string formats such as JSON and XML. Thus, our approach brings 2 problems

- 1) SUT cannot be the ones that require complicated inputs, and 2) Randoop test cases may not

reach a high block coverage rate for certain SUT. In industry, human testers often utilize some

formatted fuzzing tools - such as FACTS[19] and FinExpert[20], which outperforms Randoop

in reaching a higher coverage rate and increases the ability of automatic test suite to expose

the buggy codes. In addition, the performance of ML and AL methods may be different with

respect to each SUT. Our evaluation results may be limited by the range of chosen SUT and test

generation tool.

Another aspect of our experiments falls on the machine learning algorithms. We did some

basic turning strategies such as reweighting input labels. However, the deep learning methods

may need extra refinements. For instance, RNN models often suffer from gradient vanishing and

exploding problems. Thus gradient clipping may be useful to alleviate this problem. However,

17

our RNN models are nearly native prototypes without too much adjustment. Thus, though our

experiment shows the ability of deep learning models in processing sequential execution trace

data, we have not yet reached the upper limit of their performance.

5.4. Possible Other Approaches

There are 2 other approaches that may be interesting to investigate. One is the extensibility of

our automatic oracles, another is new machine learning algorithms that show better capabilities.

Our evaluation metrics focus on the performance of automatic oracle on the current version of

SUT. However, an interesting research question would be, what if the SUTs have been changed?

This problem may cause a challenge when changes in the number of code blocks in a SUT are

introduced. However, combined with mutation testing, the extensibility of the current model can

be further investigated.

In section 5.3, we mentioned that RNN models suffer from gradient vanishing and exploding

problems. Despite improving the RNN architecture, another approach is to use the transformer

model[21]. Instead of flavoring recent inputs, transformer models treat all elements in a sequence

equally, which is worth trying.

6. Conclusion

In this paper, we go through the entire process of evaluating machine learning and active learning

approaches in the context of automatic test oracle generation. In particular, our contributions

are as follows:

• We proposed a complete evaluation pipeline consisting of every detail of the test generation

phrase, ML/AL phrase, and evaluation phrase. The pipeline overcomes the problem of

reproducing machine learning algorithms in the context of automatic test oracle generation.

Practitioners are able to evaluate different aspects of automatic test oracle generation with

our pipeline.

• We refined and improved 2 active learning test selection strategies - cosine distance prior-

itization and confidence prioritization, which can effectively reduce the training set size to

reach a better performance.

• We did a complete evaluation with our proposed pipeline, and compared several feature

extraction methods, machine learning methods, and active learning test selection methods.

18

References

[1] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should i use for effective gui
testing?” in 18th IEEE International Conference on Automated Software Engineering, 2003.
Proceedings., 2003, pp. 164–173.

[2] A. Fontes and G. Gay, “Using machine learning to generate test oracles: A
systematic literature review,” CoRR, vol. abs/2107.00906, 2021. [Online]. Available:
https://arxiv.org/abs/2107.00906

[3] B. Settles, “Active learning literature survey,” University of Wisconsin–Madison, Computer
Sciences Technical Report 1648, 2009.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in software
testing: A survey,” IEEE Transactions on Software Engineering, vol. 41, no. 5, pp. 507–525,
2015.

[5] E. Fix and J. L. Hodges, “Discriminatory analysis - nonparametric discrimination: Consis-
tency properties,” International Statistical Review, vol. 57, p. 238, 1989.

[6] J. H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the Amer-
ican Statistical Association, vol. 58, pp. 236–244, 1963.

[7] R. F. Ling, “On the theory and construction of k-clusters,” The Computer Journal, vol. 15,
no. 4, pp. 326–332, 01 1972. [Online]. Available: https://doi.org/10.1093/comjnl/15.4.326

[8] R. Almaghairbe and M. Roper, “Automatically classifying test results by semi-supervised
learning,” in 2016 IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE), 2016, pp. 116–126.

[9] ——, “Separating passing and failing test executions by clustering anomalies,” Software Qual-
ity Journal, 2017.

[10] M. Roper, “Using machine learning to classify test outcomes,” in 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest), 2019, pp. 99–100.

[11] C. Geethal, “Training automated test oracles to identify semantic bugs,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), 2021, pp.
1051–1055.

[12] R. Braga, P. S. Neto, R. Rabêlo, J. Santiago, and M. Souza, “A machine learning approach
to generate test oracles,” ser. SBES ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 142–151. [Online]. Available: https://doi.org/10.1145/3266237.3266273

[13] A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, and M. Arratibel, “Using
machine learning to build test oracles: an industrial case study on elevators dispatching
algorithms,” in 2021 IEEE/ACM International Conference on Automation of Software Test
(AST), 2021, pp. 30–39.

[14] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to enable
controlled testing studies for java programs.” New York, NY, USA: Association for
Computing Machinery, 2014. [Online]. Available: https://doi.org/10.1145/2610384.2628055

[15] M. Martinez, T. Durieux, J. Xuan, R. Sommerard, and M. Monperrus, “Automatic repair of
real bugs: An experience report on the defects4j dataset,” 2015.

[16] M. Böhme, C. Geethal, and V. Pham, “Human-in-the-loop automatic program repair,”
CoRR, vol. abs/1912.07758, 2019. [Online]. Available: http://arxiv.org/abs/1912.07758

19

https://arxiv.org/abs/2107.00906
https://doi.org/10.1093/comjnl/15.4.326
https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1145/2610384.2628055
http://arxiv.org/abs/1912.07758

[17] M. R. Hoffmann, E. Mandrikov, and M. Friedenhagen, “Jacoco java code coverage library,”
2022. [Online]. Available: https://www.jacoco.org/jacoco/trunk/index.html

[18] A. Groce, T. Kulesza, C. Zhang, S. Shamasunder, M. Burnett, W.-K. Wong, S. Stumpf,
S. Das, A. Shinsel, F. Bice, and K. McIntosh, “You are the only possible oracle: Effective
test selection for end users of interactive machine learning systems,” IEEE Transactions on
Software Engineering, vol. 40, no. 3, pp. 307–323, 2014.

[19] Q. Wang, L. Gu, M. Xue, L. Xu, W. Niu, L. Dou, L. He, and T. Xie, “Facts: Automated
black-box testing of fintech systems,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2018. New York, NY, USA: Association for Computing
Machinery, 2018, p. 839–844. [Online]. Available: https://doi.org/10.1145/3236024.3275533

[20] T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie, “Finexpert:
Domain-specific test generation for fintech systems,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 853–862. [Online]. Available:
https://doi.org/10.1145/3338906.3340441

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017. [Online].
Available: http://arxiv.org/abs/1706.03762

20

https://www.jacoco.org/jacoco/trunk/index.html
https://doi.org/10.1145/3236024.3275533
https://doi.org/10.1145/3338906.3340441
http://arxiv.org/abs/1706.03762

A. Additional Results for Active Learning Experiments

Due to lack of space, figure 3 only shows the F1-score of 2 of our SUT. Figure 4 and 5 shows
the precision and recall curve with respect to each training set size. We can see that both
confidence+ and cos-dist method outperforms random selection, and they tend to produce a
stable result. Compare to cos-dist, confidence+ performs slightly better. As confidence+ is more
time-efficient than cos-dist, it is the most preferred method in practice.

(a) Math-3, LR (b) Math-3, RF (c) Math-3, GRU (d) Math-3, LSTM

(e) Math-4, LR (f) Math-4, RF (g) Math-4, GRU (h) Math-4, LSTM

Figure 4: Precision curve for projects Math-3 and Math-4, with respect to each machine learning
algorithm and active learning technique.

(a) Math-3, LR (b) Math-3, RF (c) Math-3, GRU (d) Math-3, LSTM

(e) Math-4, LR (f) Math-4, RF (g) Math-4, GRU (h) Math-4, LSTM

Figure 5: Recall curve for projects Math-3 and Math-4, with respect to each machine learning
algorithm and active learning technique.

21

	Introduction
	Related Work
	Testing and Test Oracles
	Machine Learning
	Using Machine Learning to Generate Test Oracles

	Solution
	Test Generation Phrase
	Machine Learning/Active Learning Phrase
	Evaluation Phrase

	Results
	Experiment Setup
	Evaluation

	Discussion
	Challenges
	Reflection on Related Works
	Limitations
	Possible Other Approaches

	Conclusion
	Additional Results for Active Learning Experiments

