
Computer Science

Capstone Report - Fall 2022

Parallel Computing for Solving Path-Based
Traffic Assignment Problems

Harry Lee

supervised by
Olivier Marin, Zhibin Chen

Preface

This study investigates the solutions to the traffic assignment problem in a
parallel computing context. The traffic assignment problem is one of the most
significant problems in the field of traffic planning; such problems play a re-
markable role in people’s daily lives. In this paper, we are going to review the
existing traffic assignment problem solutions, parallel computing fundamen-
tals, and some earlier literature on its parallel solutions. The performance of a
Spark implementation of our parallel solution will next be shown off. Finally,
based on our findings, we will sketch some conclusions about this topic and
cast some doubt on previous research.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Prof. Olivier
Marin and Prof. Zhibin Chen for their guidance and assistance over the past
semester. Being under their supervision is an honor, especially considering
that we only ever communicated online. I would like to express my foremost
appreciation to Prof. Marin for introducing me to this fascinating subject
and inspiring me to conquer all the obstacles I would never have tried to
confront without him. Additionally, I would like to show my gratitude to Prof.
Zhibin Chen, who not only offers me the transportation and mathematical
knowledge I require, but also invaluable assistance and guidelines that enable
me to complete the entire project. I would also express my gratitude to Prof.
Xianbin Gu for his earlier help on my computer science senior project, to
Prof. Lihua Xu for her unwavering support throughout my undergraduate
studies, and to all the computer science professors at NYU Shanghai for their
guidance and care throughout my college years. Finally, I would like to thank
my parents and friends for their love and support, whom without this would
have not been possible.

2

Abstract

The traffic assignment or the transportation network equilibrium (NE) problem
is defined to be finding the link flows given the origin-destination trip rates,
the network, and the link performance functions[1]. Though these problems
can be formulated as a convex program with linear constraints, the process
of path enumeration is time-consuming. A set of algorithms has been pro-
posed to avoid or alleviate the path enumeration problem [1, 2]. However, as
the master problem remains highly computationally complex, we saw the need
to distribute the original problem into a paralleled context[3]. This paper re-
views several key areas within parallel computing for solving path-based traffic
assignment problems, including problem definition, existing algorithms, and
relevant parallel computing knowledge background; then presents and analyzes
our Spark parallel implementation; in the end, it concludes with some refine-
ments and questions on existing literature.

Keywords

parallel computing, distributed system, traffic assignment, transportation
network equilibrium, NE, traffic planning, capstone, computer science, NYU,

NYU Shanghai

3

Contents

1. Introduction 5

2. Related Work 6

2.1. The Traffic Assignment Problem . 6

2.2. Distributed Systems and Parallel Computing . 8

3. Solution 11

3.1. Serial Implementation and Unit Tests . 11

3.2. Parallel Implementation with Apache Spark . 13

3.3. Application Interface . 14

4. Results 14

4.1. Experiment Setup . 14

4.2. Evaluation . 15

5. Discussion 18

5.1. Challenges . 18

5.2. Reflection on Related Works . 18

5.3. Limitations . 19

5.4. Future Work . 19

6. Conclusion 20

A. Experiment Results in Table 22

4

1. Introduction

Traffic assignment is a fundamental tool for estimating and managing traffic flow in a trans-

portation network. The transportation equilibrium problem (the NE problem), is one of the most

recognized theories for traffic assignment. It is defined to be finding the link flows given the

origin-destination trip rates, the network, and the link performance functions[1]. The goal of

solving the NE problem is to find the minimum overall travel time for all origin-destination pairs.

Though these problems can be formulated as a convex program with linear constraints, the pro-

cess of path enumeration is time-consuming. A set of algorithms has been proposed to avoid or

alleviate the path enumeration problem [1, 2]. However, as the master problem remains highly

computationally complex, we saw the need to distribute the original problem into a paralleled

context[3].

Parallel computing is a type of computation in which many calculations or processes are carried

out simultaneously[4]. Large problems can often be divided into smaller ones, which can then

be solved at the same time. To facilitate the design and implementation of parallel algorithms,

several parallel computing frameworks are proposed, including MPI[5], Spark[6], and CUDA[7].

Meanwhile, programming models such as MapReduce have won increasing popularity for their

easy-to-use and easily expressible properties, as well as their scalability over a large cluster of

machines[8].

This paper is going to review the cross-discipline area between the NE problem and parallel

computing, then present and analyze our Spark implementation. In particular, we are going to

mathematically define the NE problem, reviewing its existing serial solutions as well as some ap-

plied parallel techniques. Then, we will dive into the area of parallel computing, reviewing several

key concepts as well as commonly used tools and frameworks. With all knowledge set up, we will

introduce our parallel implementation with Apache Spark and analyze its performance. Finally,

we will highlight some limitations and improvements that could be taken to our improvement,

and bring some questions to existing literature.

5

2. Related Work

2.1. The Traffic Assignment Problem

2.1.1. Problem Definition

The basic problem of the traffic assignment or the transportation network equilibrium problem

is to find the link flows given the origin-destination trip rates, the network, and the link per-

formance functions. It is based on the behavioral assumption that each motorist travels on the

path that minimizes the travel time from origin to destination.[1] The above statemate can be

mathematically expressed as a convex optimization problem, in which we find the argmin for the

objective function:

min z(x) =
∑
a

∫ xa

0
ta(ω)dω (1)

subject to ∑
k

f rs
k = qrs ∀ r, s (2)

f rs
k ≥ 0 ∀ k, r, s (3)

And with the definitional constraints

xa =
∑
r

∑
s

∑
k

f rs
k δrsa,k ∀a (4)

In this formulation, z(x) is the objective function that is being minimized; xa is the flow on

arc a, and we define x = (..., xa, ...); ta is the travel time function on arc a, we define ta to be

ta(xa); f rs
k is the flow on path k connecting O-D pair r-s; qrs is the trip rate between origin r

and destination s; δrsa,k is an indicator variable, δrsa,k = 1 if link a is on path k between O-D pair

r-s and δrsa,k = 0 otherwise.

2.1.2. Proposed Solutions

There are several algorithms to find the solution to the optimization problem. The simplex

algorithm is the one that is proposed most early and is used widely among most commercial

solvers[9]. However, the procedures of this algorithm result in path enumeration which in turn

produces a huge whole matrix, which can be hardly distributed among a cluster.

To avoid path enumeration, the column generation algorithm[2] presents an iterative solution

procedure. As illustrated in figure 1, the procedure convents the original master problem (MP)

6

into a restricted master problem (RMP); in other words, it first solves a simpler NE problem with

fewer paths. Then, a set of sub-problems (SP) are tested, determining whether the solution to

the RMP also satisfies the solution of the MP. If not, the SP is added to the RMP, and we solve

the RMP in the new iteration; otherwise, the iteration stops and we get the final result. Column

generation guarantees that we can get an optimal solution in the end, but we could always choose

to stop at any iteration, then an approximated result will be generated.

Figure 1: Column generation algorithm workflow

Similar to the column generation algorithm, the Frank-Wolfe algorithm (linear approximation

method) can also avoid path enumeration[10]. The basic idea behind this algorithm is gradient

descent, in which we find the shortest route for each iteration and move a descendant step toward

the optimal solution. The most time-consuming part of this algorithm is finding the shortest

path, while a lot of algorithms have been proposed to complete this task, including the PARTAN

algorithm (and its variants), simplicial decomposition, successive quadratic approximations, the

TDLTP algorithm, the DOT algorithm, and the CHRONOSPT algorithm, while several studies

show that these algorithms are able to achieve a certain level of parallelization[10, 11].

Although the Frank-Wolfe algorithm is widely applied, [3] suggests that its computational

efficiency is not optimal. It argues that the gradient projection algorithm can outperform the

origin-based algorithms in large-scale transportation networks, and this algorithm could also be

solved in parallel. The basic idea of the gradient projection algorithm is approximating the

objective function (equation 1) by the second-order Taylor expansion. Then the original integral

and summation can be separable with respect to O-D pairs, which can then be solved in parallel.

7

2.1.3. Parallel Implementations

Several studies have been investigating the parallelization of the NE problem. [12, 13] propose

methods to parallelize the column generation method, [10, 3] propose methods to parallelize the

Frank-Wolfe algorithm, [3] proposes methods for parallelizing the gradient projection algorithm,

while [10, 11] focus on a smaller area - temporal shortest paths, which is a sub-step of the Frank-

Wolfe algorithm. These studies lack a common evaluation on the same dataset, so it is hard to

compare their efficiency directly. However, they draw several common conclusions:

1. Multi-thread programming with shared memory performs much better than massage passing

through the network.

2. The best algorithm for the serial environments is likely to be the worst in a parallel context.

3. Network decomposition and network replication are 2 ways to divide the master problem

into sub-problems, as the former often results in a lot of communication among processors

while network bandwidth is considered to be a scarce resource, all studies choose the latter

approach.

2.2. Distributed Systems and Parallel Computing

2.2.1. Parallel/Distributed Frameworks

Parallel computing is a type of computation in which many calculations or processes are carried

out simultaneously[4]. Large problems can often be divided into smaller ones, which can then

be solved at the same time. To facilitate the design and implementation of parallel algorithms,

several parallel computing frameworks are proposed, including MPI/OpenMP[5], Spark[6], and

CUDA[7]. Among these frameworks, MPI/OpenMP and Spark are suitable for general parallel

computing on clusters with shared memory or network, while CUDA is designed for parallel

computing over GPU. As we are mainly interested in a general framework in which we can apply

our parallel solution with commercial linear solvers, Spark and MPI come to be our preferred

choices.

Apache Spark is an open-source unified analytic engine for large-scale data processing from

UC Berkley that exploits in-memory computation for solving iterative algorithms and can be run

in traditional clusters such as Handoop[14]. The major advantages of Spark are its convenient

usage of MapReduce programming model (section 2.2.2), the easy adaptation from serial imple-

8

mentation to a parallel context, and efficient fault tolerance support[3]. OpenMP/MPI (message

passing interface), on the other hand, provides users with more flexibility. OpenMP/MPI provides

a solution mostly oriented to high-performance computing but susceptible to faults.

[14] conducts a quantitative comparison between Spark and MPI/OpenMP, their conclusions

show that though Spark has much less computational efficiency compared to MPI/OpenMP, it

is preferred in several situations:

• with need for a distributed file system with failure and data replication management

• with need for elastic scaling at runtime

• with need for a set of data analysis and management tools

2.2.2. The MapReduce Model

MapReduce is a programming model and an associated implementation for processing and gen-

erating large data sets proposed by Jeffrey Dean and Sanjay Ghemawat at Google[8]. The idea

of MapReduce was formulated around the year 2003 and has gained increasing popularity in the

area of distributed systems due to its easy-to-use, easily expressible, and large-cluster-friendly

properties. The structure of MapReduce has highlighted several key factors in the design of a

distributed system. Basically, users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key.

When MapReduce executes, the master worker first split the input data into M pieces and

assigns M map tasks and R reduce tasks to the slave workers. In the map phrase, the map

workers read the input split in the format of (k, v) pairs and generate intermediate output of

(k, v) pairs, then store the output in their local memory buffer. Periodically, the map workers

write data from local memory to the local disk partitioned into R regions, and pass the location

to the master. When the master receives messages from the map worker, it notifies the reduce

workers to read data from the map workers and append the output file to the reduce function.

When all map and reduce workers end, the master program returns.

The MapReduce model hides the parallelization details including fault tolerance, locality opti-

mization, and load balancing. For fault tolerance, the slave workers are pinged periodically while

the failure machines are marked. Completed map tasks on the failure machines are re-executed

because they contain output files needed for the reduce functions. However, completed reduce

9

tasks are not re-executed because their outputs are stored in the global storage. For locality

optimization, MapReduce assigns map tasks according to the partition of the input data each

map worker owns, which saves bandwidth, as bandwidth is considered a scarce resource in the

context of distributed systems. When the MapReduce function is nearly finished, ongoing tasks

will be repeatedly run on other idle machines, which helps to accelerate execution.

2.2.3. Evaluation on Parallel Algorithms

Evaluations of NE problem parallel solvers are often conducted over data sets of the city trans-

portation network with a different range of sizes, either on a cluster with shared memory, or

clusters in which machines are connected by a network. During the evaluation, several variables

are considered, including the NE algorithm, number of nodes (machines), network bandwidth,

and network shared memory [10, 11, 3]. Several evaluation metrics are defined as follows:

• Execution time, including the minimum, maximum, and average time.

• Speedup. Speedup is defined to be

a(ω, p) =
Ts(ω)

T (ω, p)

, where Ts(ω) is the computing time of the serial algorithm of size ω, and T (ω, p) is the

computing time of the parallel algorithm of size ω on p processors.

• Relative burden. The relative burden is defined to be

b(ω, p) =
T (ω, p)

Ts(ω)
− 1

p

. The advantage of using the relative burden is that it can provide an estimate of the “best"

speedup[10].

• Efficiency of processors. The efficiency of processors is defined to be

E(ω, p) =
a(ω, p)

p

, which gives us information on how efficiently each processor works. Due to communication

overhead, E(ω, p) < 1 for p > 1[3].

10

3. Solution

Both the Frank-Wolfe algorithm and column generation algorithm avoid the problem of path

enumeration, so we take these 2 algorithms as our experiment subjects. We believe though the

gradient projection algorithm gains adequate performance, its structure shares many similarities

with the Frank-Wolfe algorithm, thus we have ignored it in our solution design.

3.1. Serial Implementation and Unit Tests

Algorithm 1 Frank-Wolfe Algorithm
Require: network, tripRtFunc, odPs

▷ Step 0: find a feasible solution (using shortest path)
1: shortestPaths← []
2: for odP in odPs do
3: shortestPath← dijkstra(network, tripRtFunc, curTfc, odP)
4: add shortestPath to shortestPaths
5: end for
6: curTfc, z ← assignTraffic(network, shortestPaths, curTfc)
7: while true do

▷ Step 1: solution of linearized subproblem
8: shortestPaths← []
9: for odP in odPs do

10: shortestPath← dijkstra(network, tripRtFunc, curTfc, odP)
11: add shortestPath to shortestPaths
12: end for
13: newTfc,newZ← assignTraffic(network, shortestPaths, curTfc)

▷ Step 2: find optimal step size (we can use the ParTan method, below is also one way)
14: stepSize = 0.5
15: for i← range(LOOP) do
16: gradient← calculateGradient(network, odPs, curTfc, newTfc, stepSize)
17: if gradient < 0 then
18: stepSize = stepSize+ 1

2i+1

19: else
20: stepSize = stepSize− 1

2i+1

21: end if
22: end for

▷ Step 3: Update current traffic
23: curTfc← curTfc+ stepSize× (newTfc− curTfc)

▷ Step 4: Check convergence
24: newZ = calculateZ(network, odPs, curTfc)
25: if z − newZ < ε then
26: break
27: end if
28: end while
29: return curTfc, z

11

Algorithm 1 shows the details of the Frank-Wolfe algorithm and algorithm 2 shows our imple-

mentation of the column generation algorithm.

We use Java as our programming language for its convenience in packaging, testing, and con-

nection to parallel computing frameworks such as Spark and MPI, as well as the balance between

development efficiency and run-time efficiency provided by this programming language. In our

serial implementation for both algorithms, we utilize Dijkstra’s algorithm to find the shortest

path. Dijkstra’s algorithm is itself a serial algorithm that can hardly be decomposed when find-

ing the shortest path between a given OD pair. However, the advantage of such a method is that

besides low time and space complexity, given an orientation node, we can find the shortest path

to all other nodes in one go, without further overhead. As such, Dijkstra’s algorithm comes to

be our first choice of implementation. In our implementation, we cache the result of Dijkstra’s

algorithm for each orientation node and reuse it when possible.

Algorithm 2 Column Generation
Require: network, tripRtFunc, odPs

▷ Step 0: find a feasible solution (using shortest path)
1: shortestPaths← []
2: for odP in odPs do
3: shortestPath← dijkstra(network, tripRtFunc, curTfc, odP)
4: add shortestPath to shortestPaths
5: end for
6: maskedNetwork ← maskNetwork(network, shortestPaths)
7: while true do

▷ Step 1: solve master problem
8: curTfc, z ← frankWolfe(maskedNetwork, odPs)

▷ Step 2: Solve subproblem
9: newPathFound← false

10: for odP in odPs do
11: shortestPath, z ← dijkstra(network, tripRtFunc, curTfc, odP)
12: if prevTravelT ime > curTravelT ime then
13: newPathFound← true
14: add shortestPath to shortestPaths
15: maskedNetwork ← maskNetwork(network, shortestPaths)
16: end if
17: end for
18: if ¬newPathFound then
19: break
20: end if
21: end while
22: return curTfc, z

In our implementation for step 2 of the Frank-Wolfe Algorithm (as shown in algorithm 1, the

part for finding optimal step size), instead of taking the state-of-the-art methods which claim to

12

have a quicker convergence rate, we simply take the bisection method - by measuring the direction

of the gradient at the central point of the search area in each iteration, we narrow down the size

of the search area to half - which not only guarantees a fixed time complexity but also gives

us an accurate result as the precision increases exponentially with each iteration. Furthermore,

the fixed precision and time complexity define a clear goal for us to design the parallel solution,

making the comparison between parallel and serial solutions more convincing.

Our implementation of the column generation algorithm takes advantage of the Frank-Wolfe

implementation to solve its subproblem (step 2 in algorithm 2).

As for quality insurance, we write unit tests with JUnit[15] for each class and key function.

This makes sure we will always have accurate results and all components from both serial and

parallel implementations produce the same outcome.

3.2. Parallel Implementation with Apache Spark

We decided to use Apache Spark[6] over MPI[5] as our parallel computing framework. Compared

to MPI, Apache Spark provides a more accessible interface for controlling cluster configuration;

the MapReduce model along with the RDD transformations and actions design patterns makes

us easy to enforce a solution in a short time. We have 2 versions of implementation, section 3.2.1

presents a solution with larger granularity in which we divide tasks for each orientation in finding

the shortest path (Parallel-A), and section 3.2.2 presents a solution with smaller granularity in

which we further divide tasks in the calculation of objective function and optimal step size finding

(Parallel-B).

3.2.1. Split by OD Pair (Parallel-A)

As shown in some literature[3, 10], dividing tasks for each orientation node in finding the shortest

path is a preferred solution, which also utilized the characteristic of Dijkstra’s algorithm. As a

result, our implementation of finding the shortest path and completing the all-or-nothing traffic

assignment includes the following steps:

• Step 0 (preparation before all iterations): broadcast orientation-destination pairs.

• Step 1: Calculate and broadcast the current trip rate (distance) graph given the trip rate

function and current traffic.

• Step 2: Map phase: for each orientation, create a sub-task on a worker node: run Dijkstra’s

13

algorithm, assign all traffic from this orientation on the shortest path found. Then return

the (key, value) pair where the key is the orientation index, and the value is the all-or-

nothing traffic assignment in the form of a 2D matrix.

• Step 3: Reduce phase: for each worker node, add the corresponding entities of the 2D

matrix together so their sum represents the whole new traffic.

3.2.2. Smaller Granularity: Split Objective Function (Parallel-B)

Some other literature suggests that decomposing the graph is also a choice[11], while Florian et

al.[10] suggests that the calculation of the objective function and finding the optimal step size part

(step 2 of algorithm 1) can be further distributed. As a result, on top of the Parallel-A version, we

made some modifications so that the current traffic is changed into the format of Spark RDD. In

other words, the current traffic presents as a distributed dataset that is automatically maintained

by Spark - at the call of calculating the objective function, each worker node will calculate the

sum of the objective function values for links that start from the origination node it is assigned

to; finally, in the reduce phrase, all objective function values will be summed together.

3.3. Application Interface

For sake of the completeness of this project and the convenience of experiments, we used Maven to

pack the project into a jar package, leaving the following entities as Java main function arguments:

dataset name, mode (parallel/serial), and algorithm (Frank-Wolfe or Column Generation). The

application interface is able to work with the spark-submit command on the NYU Shanghai HPC

with Slurm Workload Manager, which makes it possible for large-scale experiments.

4. Results

In this section, we will introduce the dataset as well as the test environment we are working on,

followed by our experiment results and analysis.

4.1. Experiment Setup

We conduct our experiment on the NYU Shanghai HPC cluster with Slurm Workload Manager.

The cluster provides 43 nodes for parallel computing experiments with different models of Intel

14

x86 CPUs. All processors within the cluster have a minimum number of 12 cores, with Intel

Hyper-Threading Technology, a minimum of 24 threads for each node is guaranteed.

In our experiment, we are mainly interested in the following questions:

1. How is the performance difference between Frank-Wolfe algorithm and column generation?

2. As the number of worker nodes increases, how will the performance change?

3. How large is the difference between multi-node and multi-core configurations?

4. With respect to task granularity, is a larger granularity (Parallel-A) preferred or a smaller

one (Parallel-B)?

We take advantage of the public transportation database for our experiment subjects. Their

configurations are listed in Table 1. Networks such as Chicago Regional require more than 192

GB of memory for each node, and the computation costs nearly 1 hour for each experiment. Due

to resource limits, we focus on networks with medium sizes such as Winnipeg and Barcelona. We

control the following variables and repeat them 5 times for each setting of the experiment: number

of nodes, number of cores per node, mode (parallel/serial), algorithm (column generation/Frank-

Wolfe), and dataset (Winnipeg/Barcelona).

Network Zones Nodes Links

Winnipeg 147 1052 2836
Barcelona 110 1020 2522
Chicago Regional 1790 12982 39018

Table 1: Test dataset network configurations

4.2. Evaluation

4.2.1. Parallel Computation Granularity

As illustrated in section 3.2, we have implemented 2 versions of parallel solution - the one with

larger granularity and the one with smaller granularity. Before our comparison between parallel

and serial solutions, our first investigation falls on selecting one from our two parallel implemen-

tations.

Table 2 shows our preliminary result for comparing Parallel-A and Parallel-B implementations.

Given 8 nodes and 8 cores for each node, the overall execution time for Parallel-A is around half

of the time for Parallel-B. Finding optimal step size (step 2 of Algorithm 1) is the place where the

15

difference comes to be the largest. Our interpretation is that, compared to finding the shortest

path, calculating the objective function for each link is much less time-consuming. Thus, the

overhead of initializing a MapReduce function may worsen overall performance.

Implementation Algorithm Network Total Time GetNewTfc FindOptStep

Parallel-A FW Winnipeg 35.51 27.68 5.35
Parallel-A FW Barcelona 31.95 23.56 5.07
Parallel-A CG Winnipeg 102.39 84.31 11.73
Parallel-A CG Barcelona 75.41 59.32 10.41
Parallel-B FW Winnipeg 68.52 40.84 23.81
Parallel-B FW Barcelona 55.36 34.26 16.08
Parallel-B CG Winnipeg 194.23 129.03 62.93
Parallel-B CG Barcelona 143.06 85.19 40.29

Table 2: A comparison between Parallel-A implementation and Parallel-B implementation with
8 nodes and 8 cores on each node in terms of their total execution time, time for getting
new traffic, and time for finding optimal step size (unit: second). The result is the
average of 5 experiments.

In our consequent experiments, we will abandon the Parallel-B solution and refer the Parallel-A

implementation directly as the "parallel solution".

4.2.2. NE Algorithms

In this section, we compare the performance of our implementation of Frank-Wolfe algorithm

and column generation. Table 3 shows the performance of the two algorithms averaged over

our whole experiments. From a general perspective, column generation takes 2 ∼ 3 times for

execution compared to Frank-Wolfe. As both algorithms avoid the path-enumeration problem,

column generation shows nearly no advantage over Frank-Wolfe.

Winnipeg Barcelona

Frank-Wolfe 41.90 32.08
Column Generation 109.49 79.32

Table 3: A comparison between Frank-Wolfe algorithm and column generation in terms of their
total execution time (unit: second), averaged over all our experiments.

For a closer look, we count the time of the iteration in the main loop of column generation

(the while loop in Algorithm 2) and keep track of how many links are involved in each iteration

of the sub-problem. Results show that the times of iteration are usually below 5, while each

sub-problem usually contains more than 80% of the links of the original graph. In conclusion,

the effect of "reducing the original problem and remove unnecessary links" of column generation

16

does not help with increasing algorithm performance, and it also performs poorly in decreasing

space complexity.

4.2.3. Cluster Configuration

In this section, we will discuss the performance of the parallel algorithms in different cluster

settings. Particularly, we are interested in how the number of nodes, the number of cores per

node, and the total number of workers influence algorithm performance. Figure 2 shows the

results corresponding to each variable in terms of line charts; appendix A shows one part of the

data we use for the graphs. The green line in each graph represents our baseline - performance

of the serial implementation.

(a) Average speedup with respect to the number of
nodes

(b) Average speedup with respect to the number of
cores per node

(c) Average speedup with respect to total num-
ber of workers (numWorkers = numNodes ×
numCoresPerNode)

Figure 2: Algorithm performance with respect to settings of the cluster, results are averaged over
our whole experiments.

Our result shows that, either a low amount of nodes or a low amount of cores per node may lead

to a performance that is poorer than the serial solution. Generally, the increase in nodes and the

17

number of cores per node will lead to an increase in performance. However, the increase in the

number of workers alone may not lead to an increase in performance - the balance between nodes

and cores should be considered. We believe that the effect of introducing a new node is more

conspicuous than adding a new core, especially considering Intel Hyper-Threading Technology

when the concept of core in Spark may be different from the concept of core in Intel CPU. Our

data support this belief - to achieve an overall speedup of 1.2, we need approximately 8 nodes

(2b), but approximately 22 cores (2a). In conclusion, only when the number of cores and nodes

reach a threshold will parallel computing gain greater performance than the serial solution.

5. Discussion

5.1. Challenges

During the entire project, we’ve encountered 3 challenges: programming language, HPC cluster,

and online communication.

Developing a Spark program requires in-depth knowledge of Java programming language, and

associated toolchains such as JUnit and maven. Thus, learning the relevant technology stack and

getting ready for building a reliable engineering project takes me a lot of time.

The NYU Shanghai HPC cluster uses Slurm as the work scheduler. Though it provides a Spark

module where I can directly import, it did not provide instructions on how to launch a cluster

project. Nor did the official Spark documentation mention the Slurm cluster. To make things

work, I looked through a lot of other universities and clusters’ handbooks including Stanford and

Princeton, and finally figured out the ways for starting master and slave nodes manually, as well

as ways for memory control in spark-submit. In addition, the configuration of the HPC makes

some links between nodes unreachable, which increases the difficulties for my experiment.

The whole project was supervised by my 2 professors online throughout the whole semester.

We have to overcome the unstable virtual environment and conquer the difficulties of being in

different time zones.

5.2. Reflection on Related Works

The study of Chen et al.[3] shows that the speedup of parallel algorithms works better in a larger

network. Due to hardware limitations on memory and CPU cores, we are not able to validate this

argument. However, our result on graphs with 1/10 size of their test data still shows a conspicuous

18

gap to their result. Reviewing their details, I am wondering if it is due to the difference in the

data structure which we use to transfer messages between workers - their study uses an adjacency

list, while our implementation uses an adjacency matrix. The advantage of our data structure is

the convenience in the reduce phase for combining the traffic network. However, I then realize

that the transportation network is more like a sparse matrix, and the use of an adjacency matrix

increases a lot of space complexity. As a result, space complexity may be the reason for our gaps.

The study of Florian et al.[10] suggest that all steps in Frank-Wolfe algorithms could be decom-

posed and reach a higher performance. However, our results do not support so. The distributed

calculation of the objective function needs a broadcast of the current traffic graph to all worker

nodes, which is time-consuming. In addition, calculating the result of the objective function is

not a computationally demanding task, thus the time saved can hardly exceed the communication

overhead.

5.3. Limitations

There are mainly 2 limitations in our project - hardware resources and software structure.

The study of Chen et al.[3] utilizes more than 600 threads, while 192 is our maximum. In

addition, we do not have enough memory quota to run experiments with large graphs such as

Austin, Philadelphia, and Chicago, as such, it may be hard for us to compare their results directly.

In the meantime, as our CPU cores are shared between users, it is possible our work efficiency is

being influenced by other works.

Due to limitations in time and effort, we have not explored some details in the implementation

of NE solutions, including but not limited to the data structure storing the network, methods

for finding the optimal step size, and some parallel shortest path solutions[11]. These works may

increase the performance of our existing solutions.

5.4. Future Work

Our results suggest the following work which may help boosting parallel computing performance:

1. Use adjacency list to represent network graph.

2. Get a deep understanding of JVM memory management, try decreasing the need for memory

so we can test with a larger graph with more nodes.

3. Try paralleling the shortest path algorithms.

19

6. Conclusion

In this paper, we mathematically introduce and define the Traffic Assignment Problem along with

existing serial and parallel solutions in the literature. We introduce our implementation of both

serial and parallel versions of 2 NE algorithms and give a holistic assessment of it. In particular,

our contributions are as follows:

• Review the cross-discipline area between the NE problem and parallel computing, including

the definition of the NE problem, as well as relevant knowledge and toolchain for parallel

computing.

• Implement serial and parallel solutions for Frank-Wolfe algorithm and column generation,

discussing the implementation details.

• Conduct a holistic assessment of our implementations and compare it with existing studies,

proposing directions for improvement and refinement. computing,

20

References

[1] Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with mathematical program-
ming methods. Prentice-Hall, 1985.

[2] F. He, Y. Yin, and S. Lawphongpanich, “Network equilibrium models with battery electric
vehicles,” Transportation Research Part B: Methodological, vol. 67, pp. 306–319, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0191261514000915

[3] X. Chen, Z. Liu, and I. Kim, “A parallel computing framework for solving user equilibrium
problem on computer clusters,” Transportmetrica A: Transport Science, vol. 16, no. 3, p.
550–573, 2020.

[4] G. S. Almasi and A. Gottlieb, Highly Parallel Computing. USA: Benjamin-Cummings
Publishing Co., Inc., 1989.

[5] Intel, “Intel® mpi library.” [Online]. Available: https://www.intel.com/content/www/us/
en/developer/tools/oneapi/mpi-library.html

[6] Apache, “Apache spark™ - unified engine for large-scale data analytics.” [Online]. Available:
https://spark.apache.org/

[7] Nvidia, “Cuda toolkit - free tools and training,” Sep 2022. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit

[8] J. Dean and S. Ghemawat, “Mapreduce,” Communications of the ACM, vol. 51, no. 1, p.
107–113, 2008.

[9] K. G. Murty, Linear programming. Murty. John Wiley amp; Sons, 1976.

[10] M. Florian, I. Chabini, and Éric Le Saux, “Parallel and distributed computation
of shortest routes and network equilibrium models,” IFAC Proceedings Volumes,
vol. 30, no. 8, pp. 1259–1264, 1997, 8th IFAC/IFIP/IFORS Symposium on
Transportation Systems 1997 (TS ’97), Chania, Greece, 16-18 June. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667017439942

[11] N. Tremblay and M. Florian, “Temporal shortest paths: Parallel computing implementa-
tions,” Parallel Computing, vol. 27, no. 12, p. 1569–1609, 2001.

[12] S. Basso and A. Ceselli, “Distributed asynchronous column generation,” Computers amp;
Operations Research, vol. 146, p. 105894, 2022.

[13] M. Yu, V. Nagarajan, and S. Shen, “Improving column generation for vehicle routing prob-
lems via random coloring and parallelization,” INFORMS Journal on Computing, vol. 34,
no. 2, p. 953–973, 2022.

[14] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics in the cloud: Spark on
hadoop vs mpi/openmp on beowulf,” Procedia Computer Science, vol. 53, p. 121–130, 2015.

[15] T. J. Team, “The 5th major version of the programmer-friendly testing framework for java
and the jvm.” [Online]. Available: https://junit.org/junit5/

21

https://www.sciencedirect.com/science/article/pii/S0191261514000915
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://spark.apache.org/
https://developer.nvidia.com/cuda-toolkit
https://www.sciencedirect.com/science/article/pii/S1474667017439942
https://junit.org/junit5/

A. Experiment Results in Table

Appendix A shows part of the data that we use to group and generate tables and graphs. The
whole dataset and program package can be found at GitHub (https://github.com/Harrilee/parallel-
ne-solver).

Nodes Cores/Node Method Time NewTfcTime TotalSpdup NewTfcSpdUp

1 1 serial 36.86 31.28 1.00 1.00
1 1 parallel 74.71 63.88 0.49 0.49
1 4 parallel 52.02 43.23 0.71 0.72
1 8 parallel 39.95 31.87 0.92 0.98
1 12 parallel 40.67 32.71 0.91 0.96
1 16 parallel 44.51 35.47 0.83 0.88
1 20 parallel 40.63 32.11 0.91 0.97
1 24 parallel 44.10 35.06 0.84 0.89
2 1 parallel 64.77 53.83 0.57 0.58
2 4 parallel 52.90 44.48 0.70 0.70
2 8 parallel 41.69 33.79 0.88 0.93
2 12 parallel 41.10 33.12 0.90 0.94
2 16 parallel 38.03 30.13 0.97 1.04
2 20 parallel 41.00 32.07 0.90 0.98
2 24 parallel 38.14 29.32 0.97 1.07
4 1 parallel 66.17 55.21 0.56 0.57
4 4 parallel 49.22 40.94 0.75 0.76
4 8 parallel 39.45 31.54 0.93 0.99
4 12 parallel 37.80 30.00 0.98 1.04
4 16 parallel 33.96 25.86 1.09 1.21
4 20 parallel 34.58 25.69 1.07 1.22
4 24 parallel 31.55 22.88 1.17 1.37
6 1 parallel 70.18 58.61 0.53 0.53
6 4 parallel 47.88 39.57 0.77 0.79
6 8 parallel 35.42 28.11 1.04 1.11
6 12 parallel 33.55 25.88 1.10 1.21
6 16 parallel 30.71 22.10 1.20 1.42
6 20 parallel 26.16 17.38 1.41 1.80
6 24 parallel 23.51 14.93 1.57 2.10
8 1 parallel 70.52 59.02 0.52 0.53
8 4 parallel 46.33 38.09 0.80 0.82
8 8 parallel 35.51 27.68 1.04 1.13
8 12 parallel 29.29 21.51 1.26 1.45
8 16 parallel 24.34 15.56 1.51 2.01
8 20 parallel 23.04 14.42 1.60 2.17
8 24 parallel 22.95 14.23 1.61 2.20

Table 4: The entire results of Frank-Wolfe algorithm experiment on the Winnipeg dataset listed
in table. All entries are the average of 5 experiments.

22

	Introduction
	Related Work
	The Traffic Assignment Problem
	Distributed Systems and Parallel Computing

	Solution
	Serial Implementation and Unit Tests
	Parallel Implementation with Apache Spark
	Application Interface

	Results
	Experiment Setup
	Evaluation

	Discussion
	Challenges
	Reflection on Related Works
	Limitations
	Future Work

	Conclusion
	Experiment Results in Table

